People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomes, Ps
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Assessment of the Bone Healing Process Mediated by Periosteum-Derived Mesenchymal Stem Cells' Secretome and a Xenogenic Bioceramic-An In Vivo Study in the Rabbit Critical Size Calvarial Defect Model.citations
- 2018Processing, characterization, and in vivo evaluation of poly (L-lactic acid)-fish gelatin electrospun membranes for biomedical applicationscitations
- 2018Development of bioactive tellurite-lanthanide ions-reinforced hydroxyapatite composites for biomedical and luminescence applicationscitations
- 2017Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applicationscitations
- 2016Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applicationscitations
- 2015Smart electroconductive bioactive ceramics to promote in situ electrostimulation of bonecitations
- 2015Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regenerationcitations
- 2014Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone graftscitations
- 2013Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue applicationcitations
- 2012Development and Characterization of Ag2O-Doped ZnLB Glasses and Biological Assessment of Ag2O-ZnLB-Hydroxyapatite Compositescitations
- 2010Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substratescitations
- 2010New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performancecitations
- 2009Assessment of the osteoblastic cell response to a zinc glass reinforced hydroxyapatite composite (Zn-GRHA)citations
- 2008Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
Assessment of the osteoblastic cell response to a zinc glass reinforced hydroxyapatite composite (Zn-GRHA)
Abstract
Hydroxyapatite (HA), Ca 10(PO 4) 6(OH) 2 and tricalcium phosphate (TCP) bioceramics have been used as graft materials. However, optimal biological performance has not been established yet and zinc, being a biosafe, biocompatible element, could favour for specific osteoblastic cell response. Therefore, this paper investigates the preliminary results and potential impact of zinc glass reinforced hydroxyapatite (Zn-GRHA) on a human osteoblastic cell system. The biological behaviour of Zn-GRHA samples was assessed by confocal laser scanning microscopy, while material characterisation was performed by SEM-EDX and XRD analysis. Established cultures reported an increased proliferation and a confluent cell layer in some areas of the material surface at day two. Cells were spread all over the material surface and established multiple cell-to-cell interactions relying on prominent cytoplasmic processes. At day six, confluent cell layers were verified on the Zn-GRHA material's surface, reporting an improved biological response, compared to control (hydroxyapatite). Copyright © 2009 Inderscience Enterprises Ltd.