People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribeiro, As
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2017Strain-based approach for fatigue crack propagation simulation of the 6061-T651 aluminium alloycitations
- 2011Strain-life and crack propagation fatigue data from several Portuguese old metallic riveted bridgescitations
- 2008Analysis of Fatigue Damage under Block Loading in a Low Carbon Steelcitations
- 2008Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparisoncitations
- 2007Assessment of the fatigue behaviour of friction stir welded joints: Aluminium alloy 6082-T6
- 2007Influence of the submerged arc welding in the mechanical behaviour of the P355NL1 steel - part II: analysis of the low/high cycle fatigue behaviourscitations
- 2006Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steelcitations
- 2006Fatigue behaviour of riveted steel lap jointscitations
- 2006A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approach
- 2005Finite element modeling of fatigue damage using a continuum damage mechanics approachcitations
- 2004Finite element modelling of fatigue damage using a continuum damage mechanics approachcitations
Places of action
Organizations | Location | People |
---|
document
Strain-based approach for fatigue crack propagation simulation of the 6061-T651 aluminium alloy
Abstract
Fatigue crack growth models based on elastic-plastic stress-strain histories, at the crack tip vicinity, and strain-life damage models have been proposed. The UniGrow model is a particular case of fatigue crack propagation models. The residual stresses developed at the crack tip play a central role in these models, since they are used to assess the actual fatigue crack driving force, taking into account mean stress and loading sequential effects. The performance of the UniGrow model is assessed based on available experimental constant amplitude crack propagation data, derived for the 6061-T651 aluminium alloy. Key issues in fatigue crack growth prediction, using the UniGrow model, in particular the residual stresses evolution, are discussed. Using available strain-life data, it was possible to model the fatigue crack propagation behaviour for the AA6061-T651, taking into account the stress R-ratio effects. A satisfactory agreement was found, between the predictions and the experimental crack propagation data. © 2017 Inderscience Enterprises Ltd.