People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xu, Lei
Nottingham Trent University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Miniaturization Potential of Additive-Manufactured 3D Mechatronic Integrated Device Components Produced by Stereolithography
- 2022Far-Field Polarization Engineering from Nonlinear Nanoresonatorscitations
- 2021Influence of interlayer temperature on microstructure of 5183 aluminium alloy made by wire arc additive manufacturingcitations
- 2020Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennascitations
- 2019Second-harmonic generation in (111) gallium arsenide nanoantennas
- 2019Damage analysis of a perfect broadband absorber by a femtosecond lasercitations
- 2018Highly-Efficient Longitudinal Second-Harmonic Generation from Doubly-Resonant AlGaAs Nanoantennascitations
- 2016Nonlinear Generation of Vector Beams from AlGaAs Nanoantennascitations
Places of action
Organizations | Location | People |
---|
article
Influence of interlayer temperature on microstructure of 5183 aluminium alloy made by wire arc additive manufacturing
Abstract
The variations in mechanical properties compared to the traditional processed (wrought) products, porosity formation, and solidification cracking are the primary concerns that may restrict industrial applications of wire arc additive manufacturing (WAAM) aluminium alloy products. Interlayer temperature is one of the crucial factors that can adversely affect the built quality and properties of material produced using WAAM. The paper aims at the possible effects of different interlayer temperatures on the geometry and microstructure of WAAM aluminium 5183 alloy as a function of varying heat input. For a given heat input, samples built using a higher interlayer temperature (100°C) showed wider and shorter layer deposits with increased penetration compared with lower interlayer temperature (50°C) samples. Microstructure of the chosen material revealed columnar grains at each layer and equiaxed grains at layer overlap position and at top layer. Interlayer temperature had a minor influence on deposit geometry and microstructure.