Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saleem, W.

  • Google
  • 2
  • 10
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A feed direction cutting force prediction model and analysis for ceramic matrix composites C/SiC based on rotary ultrasonic profile milling1citations
  • 2012Prediction of delamination crack growth in carbon/fiber epoxy composite laminates using a non-local cohesive zone modeling1citations

Places of action

Chart of shared publication
Rathore, M. F.
1 / 1 shared
Amin, M.
1 / 3 shared
Israr, A.
1 / 1 shared
Li, Q.
1 / 24 shared
Ahmed, A.
1 / 16 shared
Ijaz, Hassan
1 / 9 shared
Nisar, K.
1 / 1 shared
Chaudry, S. R.
1 / 1 shared
Khan, Muhammad
1 / 25 shared
Gornet, L.
1 / 1 shared
Chart of publication period
2023
2012

Co-Authors (by relevance)

  • Rathore, M. F.
  • Amin, M.
  • Israr, A.
  • Li, Q.
  • Ahmed, A.
  • Ijaz, Hassan
  • Nisar, K.
  • Chaudry, S. R.
  • Khan, Muhammad
  • Gornet, L.
OrganizationsLocationPeople

article

A feed direction cutting force prediction model and analysis for ceramic matrix composites C/SiC based on rotary ultrasonic profile milling

  • Rathore, M. F.
  • Amin, M.
  • Israr, A.
  • Saleem, W.
  • Li, Q.
  • Ahmed, A.
Abstract

<jats:p>Ceramic matrix composites have immense applications in the aerospace, aircraft, and automobile industries. Belonging to this class, carbon-fiber reinforced ceramic matrix composites (C/SiC) are used for critical applications due to their superior properties. However, these materials have also stringent properties of heterogeneity, anisotropy, and varying thermal properties that affect machining quality and process efficiency. So, developing a cutting force prediction model and analyzing machining parameters is an essential need for the accurate machining of such materials. In this study, a mechanistic-based feed direction cutting force prediction model for rotary ultrasonic profile milling of C/SiC composites is developed and validated experimentally. The experimental and simulation results closely match each other. The mean error and standard deviation were recorded as 1.358 % and 6.003, respectively. The parametric sensitivity analysis showed that cutting force decreased with increased cutting speed, whereas it increased with increased feed rate and cutting depth. The proposed cutting force model for rotary ultrasonic profile milling of C/SiC composites is robust and can be applied to predict cutting forces and optimize the machining process parameters at the industry level.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • simulation
  • grinding
  • milling
  • composite
  • ultrasonic
  • ceramic