Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Levy, Pilar

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Interaction between HFE and haptoglobin polymorphisms and its relation with plasma glutathione levels in obese children2citations

Places of action

Chart of shared publication
Faustino, Paula
1 / 2 shared
Aguiar, Laura
1 / 1 shared
Ferreira, Joana
1 / 1 shared
Alho, Irina
1 / 1 shared
Marinho, Cláudia
1 / 1 shared
Martins, Rute
1 / 1 shared
Inacio, Angela
1 / 1 shared
Bicho, Manuel
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Faustino, Paula
  • Aguiar, Laura
  • Ferreira, Joana
  • Alho, Irina
  • Marinho, Cláudia
  • Martins, Rute
  • Inacio, Angela
  • Bicho, Manuel
OrganizationsLocationPeople

article

Interaction between HFE and haptoglobin polymorphisms and its relation with plasma glutathione levels in obese children

  • Faustino, Paula
  • Aguiar, Laura
  • Ferreira, Joana
  • Alho, Irina
  • Marinho, Cláudia
  • Martins, Rute
  • Inacio, Angela
  • Bicho, Manuel
  • Levy, Pilar
Abstract

<jats:p>Obesity among children has emerged as a serious public health problem. The growing prevalence of childhood obesity has led to the appearance of serious complications, including a chronic systemic inflammation associated with oxidative stress.  In the present study, we analysed the interaction between two genes related with iron metabolism - HFE and haptoglobin – and the plasmatic concentration of glutathione, as a way to evaluate the antioxidant response capacity in obesity. To achieve this, 118 obese children and 89 eutrophic children were recruited for the study. Results showed that although obese children present a significantly decreased tGSH levels, once we analysed separately children based on their haptoglobin phenotype, the decreased tGSH levels is significant only for the Hp 2 allele. Additionally, Hp 2.2 obese children carrying H63D polymorphism show significantly lower tGSH/GSSG values. Our results found an association of haptoglobin and HFE with oxidative stress in childhood obesity.</jats:p>

Topics
  • impedance spectroscopy
  • iron