Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dallinger, Niels

  • Google
  • 3
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Semi-analytical calculation model for friction of polymers on the example of POM ∣ PE-UHMW and steel ∣ PE-UHMWcitations
  • 2022Experimental verification of analytical calculation approaches and FEM material models with the aim of determining friction of thermoplastics1citations
  • 2020Calculation Approaches for Determining the Sliding Friction Coefficient – Analytical Consideration and FE-Modelling1citations

Places of action

Chart of shared publication
Golder, Markus
3 / 3 shared
Sumpf, Jens
1 / 5 shared
Moneke, Martin
3 / 5 shared
Bergmann, André
3 / 7 shared
Bensing, Timo
2 / 3 shared
Keil, Yvonne
1 / 1 shared
Chart of publication period
2024
2022
2020

Co-Authors (by relevance)

  • Golder, Markus
  • Sumpf, Jens
  • Moneke, Martin
  • Bergmann, André
  • Bensing, Timo
  • Keil, Yvonne
OrganizationsLocationPeople

article

Calculation Approaches for Determining the Sliding Friction Coefficient – Analytical Consideration and FE-Modelling

  • Keil, Yvonne
  • Golder, Markus
  • Bensing, Timo
  • Moneke, Martin
  • Bergmann, André
  • Dallinger, Niels
Abstract

Microstructures on polymer surfaces are known to reduce friction and thevisibility of scratches. Due to the complex interaction of multiple surface areas in contactwith each other the prediction of coefficient of friction (COF) or wear is difficult and dependson an empirical solution. This article deals with possibilities of calculating the deformingpart of friction via an analytical solution and a FE-model. In a first step the modelling ofsingle contacts is demonstrated. The analytical calculation based on the Hertzian contactequations is extended regarding viscoelastic material parameters. The basic approach ofFE-modelling is explained including calibration of the material model using the softwareMCalibration®. The article introduces the different procedures of simulating and modellingCOF and wear taking into account the area of contact and resulting stress distribution.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • polymer
  • simulation
  • coefficient of friction