People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wan Ibrahim, Mohd Haziman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2021Evaluation on the rheological and mechanical properties of concrete incorporating eggshell with tire powdercitations
- 2020INFLUENCE OF PALM OIL BIOMASS CLINKER AND EMPTY FRUIT BUNCH FIBERS ON CONCRETE PROPERTIES
- 2020Failure behavior of sandwich honeycomb composite beam containing crack at the skin.citations
- 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawatercitations
- 2019Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Pastecitations
- 2019Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawatercitations
- 2019Carbonation of concrete containing mussel (Perna Viridis) shell ashcitations
- 2019Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious materialcitations
- 2019Recycling of Coal Ash in Concrete as a Partial Cementitious Resourcecitations
- 2018An Utilization of Palm Fuel Ash (POFA) and Ceramic Waste as Cement Materials Replacement in Concrete Productioncitations
- 2018Evaluate the expressions of compression strength and UPV relationshipcitations
- 2018Influence of ground coal bottom ash on the properties of concretecitations
- 2017Crack classification in concrete beams using AE parameterscitations
- 2017A review on seashells ash as partial cement replacementcitations
- 2017A Review: The Effect of Grinded Coal Bottom Ash on Concretecitations
- 2017The durability of concrete containing recycled tyres as a partial replacement of fine aggregatecitations
- 2016Fresh properties and flexural strength of self-compacting concrete integrating coal bottom ashcitations
- 2014Effect of Rice Husk Ash Fineness on the Properties of Concretecitations
- 2014Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cyclescitations
- 2014The effect of bottom ash on fresh characteristic, compressive strength and water absorption of self-compacting concretecitations
- 2014Compressive and Flexural Strength of Foamed Concrete Containing Polyolefin Fiberscitations
- 2011Strength and permeability properties of concrete containing rice husk ash with different grinding timecitations
Places of action
Organizations | Location | People |
---|
article
An Utilization of Palm Fuel Ash (POFA) and Ceramic Waste as Cement Materials Replacement in Concrete Production
Abstract
<jats:p>The consumption of agricultural and industrial wastes has grown rapidly across the world which leads to create large quantities of wastes. It reflects the problem of having a limited number of landfills due to a huge amount of waste produced. Therefore, the solution is recycle the agricultural and industrial wastes as one of the materials use in concrete. Agricultural and industrial wastes were selected as cement replacement in a concrete production. This study aims to investigate the concrete properties containing palm oil fuel ash (POFA) and ceramic tile wastes, such as workability, compressive and splitting tensile strength. The concrete mix design ratio was designed for concrete grade strength 30 and water cement ratio of 0.55. Testing for compressive strength was measured at 7 and 28 days and for tensile strength only at 28 days. This research finds that with combination of 5% POFA and 10% ceramic with 27.1 MPa for compressive strength and 2.5 MPa for tensile strength will be the optimum mix design to replace cement in concrete. This research helps to improve the knowledge, increase the level of environmental awareness and understanding the importance and recycling the construction waste generated. </jats:p>