Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Žižlavský, Tomáš

  • Google
  • 6
  • 4
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Omítky s vodoretenčními přísadami ; Mortars with water retaining admixturescitations
  • 2021Foam Glass Dust as a Supplementary Material in Lime Mortars5citations
  • 2020Rheology of natural hydraulic lime pastes modified by non-traditional biopolymeric admixtures3citations
  • 2019Influence of biopolymeric water-retaining admixtures on hydration of Portland cement studied using isothermal calorimetry2citations
  • 2019Rheology of natural hydraulic lime pastes modified by non-traditional biopolymeric admixtures3citations
  • 2018Rheological Properties of Lime Mortars with Guar Gum Derivatives18citations

Places of action

Chart of shared publication
Bayer, Patrik
1 / 16 shared
Vyšvařil, Martin
5 / 23 shared
Rovnaníková, Pavla
1 / 18 shared
Rovnanikova, Pavla
2 / 18 shared
Chart of publication period
2024
2021
2020
2019
2018

Co-Authors (by relevance)

  • Bayer, Patrik
  • Vyšvařil, Martin
  • Rovnaníková, Pavla
  • Rovnanikova, Pavla
OrganizationsLocationPeople

article

Rheology of natural hydraulic lime pastes modified by non-traditional biopolymeric admixtures

  • Rovnanikova, Pavla
  • Žižlavský, Tomáš
  • Vyšvařil, Martin
Abstract

Viscosity enhancing admixtures, widely used to improve characteristics of concrete and ready-mix mortars, are mainly different derivatives of cellulose. Due to the nature of cellulose processing, the environmental-friendlier alternatives should be studied in order to reduce the impact of the building industry on the environment. The rheological study of natural hydraulic lime (NHL) grouts modified by four different biopolymers is carried out to investigate their behaviour in the NHL-based mortars. The biopolymers studied are of seaweed (sodium salt of alginic acid (ALGNA) and carrageenan (CG)) and microbial (diutan gum (DG) and xanthan gum (XG)) origin. The effect of addition of these admixtures in the doses of 0.1%, 0.5%, and 1% was studied using hybrid rheometer with DIN concentric cylinders geometry. The flow properties as well as viscoelastic properties were studied. The addition of any of the admixtures led to the increase in yield stress, with DG being the most effective admixture. Desirable increase in consistency coefficient was observed within the pastes with CG and DG addition having growing dosage dependency, the ALGNA addition also increased the coefficient noticeably, but it was furtherly decreased with growing dose of admixture. The fluidity index lower than 1 expressed shear-thinning behaviour of studied pastes, except the pastes with highest dose of admixtures, and all of the XG pastes. The addition of CG and DG supported the stability of the grout expressed as the increase in critical strain, thus prolongation of linear viscoelastic region. The flow strain was increased by all of the studied admixtures promoting the gel-like behaviour of the pastes. Complex modulus and viscosity measured at 1Hz frequency were unaffected by the DG addition while they were increased notably by addition of other admixtures with ALGNA and XG supporting the resistance to deformation of the grouts studied. Correspondingly to complex modulus increase, the loss tangent is diminished, reporting more elastic behaviour of the material. All of the admixtures studied increased the yield stress, and the influence of most of them had similar trends within other properties. Noticeable differences in efficiency and dosage-dependency were observed. The xanthan gum was overall the worst performing admixture. This was mainly due to higher sensitivity of xanthan to the concentration of bivalent ions in the solution.

Topics
  • impedance spectroscopy
  • Sodium
  • viscosity
  • cellulose
  • lime
  • complex modulus