Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garbacz, Andrzej I. Inn.

  • Google
  • 1
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Effect of Misalignment on Pulloff Test Results: Numerical and Experimental Assessments. 110citations

Places of action

Chart of shared publication
Courard, L.
1 / 4 shared
Bissonnette, B.
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Courard, L.
  • Bissonnette, B.
OrganizationsLocationPeople

article

Effect of Misalignment on Pulloff Test Results: Numerical and Experimental Assessments. 1

  • Courard, L.
  • Garbacz, Andrzej I. Inn.
  • Bissonnette, B.
Abstract

The successful application of a concrete repair system is often evaluated through pulloff testing. For such in-place quality control (QC) testing, the inherent risk of misalignment might affect the recorded value and eventually make a difference in the acceptance of the work The issue of eccentricity in pulloff testing has been ignored in field practice because it is seen as an academic issue. This paper presents the results of a project intended to quantify the effect of misalignment on pulloff tensile strength evaluation and provide a basis for improving QC specifications if necessary. The test program consisted first of an analytical evaluation of the problem through two-dimensional finite element modeling simulations and, in a second phase, in laboratory experiments in which the test variables were the misalignment angle (0, 2, and 4 degrees) and the coring depth (15 and 30 mm [0.6 and 1.2 in.]). It was found that calculations provide a conservative, but realistic, lower bound limit for evaluating the influence of misalignment upon pulloff test results: a 2-degree misalignment can be expected to yield a pulloff strength reduction of 7 to 9% for 15 and 30 mm (0.6 and 1.2 in.) coring depths, respectively, and the corresponding decrease resulting from a 4-degree misalignment reaches between 13 and 16%. From a practical standpoint, the results generated in this study indicate that when specifying a pulloff strength limit in the field, the value should be increased (probable order of magnitude: 15%) to take into account the potential reduction due to testing misalignment.

Topics
  • impedance spectroscopy
  • phase
  • experiment
  • simulation
  • strength
  • two-dimensional
  • tensile strength