People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luding, Stefan
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Densification of visco-elastic powders during free and pressure-assisted sinteringcitations
- 2022Visco-elastic sintering kinetics in virgin and aged polymer powderscitations
- 2021Neck growth kinetics during polymer sintering for powder-based processescitations
- 2020Elastic wave propagation in dry granular mediacitations
- 2019Sintering—Pressure- and Temperature-Dependent Contact Modelscitations
- 2018An iterative sequential Monte Carlo filter for Bayesian calibration of DEM models
- 2018Effect of particle size and cohesion on powder yielding and flowcitations
- 2017Initial stage sintering of polymer particles - Experiments and modelling of size-, temperature- and time-dependent contactscitations
- 2017From soft and hard particle simulations to continuum theory for granular flows
- 2017Multiscale modelling of agglomeration
- 2017Powders and Grains 2017
- 2016Sintering of polymer particles
- 2015Hydraulic properties of sintered porous glass bead systems
Places of action
Organizations | Location | People |
---|
article
Effect of particle size and cohesion on powder yielding and flow
Abstract
International audience ; The bulk properties of powders depend on material characteristics and size of the primary particles. During storage and transportation processes in the powder processing industry, the material undergoes various modes of deformation and stress conditions, e.g., due to compression or shear. In many applications, it is important to know when powders are yielding, i.e. when they start to flow under shear; in other cases it is necessary to know how much stress is needed to keep them flowing. The measurement of powder yield and flow properties is still a challenge and will be addressed in this study.In the framework of the collaborative project T-MAPPP, a large set of shear experiments using different shear devices, namely the Jenike shear tester, the ELE direct shear tester, the Schulze ring shear tester and the FT4 powder rheometer, have been carried out on eight chemically-identical limestone powders of different particle sizes in a wide range of confining stresses. These experiments serve two goals: i) to test the reproducibility/consistency among different shear devices and testing protocols; ii) to relate the bulk behaviour to microscopic particle properties, focusing on the effect of particle size and thus inter-particle cohesion.The experiments show high repeatability for all shear devices, though some of them show more fluctuations than others. All devices provide consistent results, where the FT4 powder rheometer gives lower yield/steady state stress values, due to a different pre-shearing protocol. As expected, the bulk cohesion decreases with increasing particle size (up to 150 μm), due to the decrease of inter-particle cohesion. The bulk friction, characterized in different ways, is following a similar decreasing trend, whereas the bulk density increases with particle size in this range. Interestingly, for samples with particle sizes larger than 150 μm, the bulk cohesion increases slightly, while the bulk friction increases considerably—presumably due to particle interlocking ...