People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stamopoulos, Antonios
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Morphological and functional characterization of electroplated Ni-graphene composite coatingscitations
- 2023Fast continuous in-situ XCT of additively manufactured carbon fiber reinforced tensile test specimenscitations
- 2020Assessment of the shear properties of thermoplastic composites using the ±45° tension and the V-notched rail shear methodscitations
- 2018Prediction of mechanical properties of porous CFRP specimens by ANNs and X-ray CT datacitations
Places of action
Organizations | Location | People |
---|
article
Fast continuous in-situ XCT of additively manufactured carbon fiber reinforced tensile test specimens
Abstract
The reinforcement of fused filament fabricated (FFF) components with continuous fibers allows for high versatility in the design of mechanical properties for a specific applications needs. However, the bonding quality between continuous fibers and the FFF matrix material has high impact on the overall performance of the composite. To investigate the bonding quality within additively manufactured (AM) continuous fiber reinforced specimens, tensile tests have been performed which revealed a sudden reduction in tensile stress, that most likely was not related to actual rupture of continuous fibers. Consequently, within this work we will expand upon these findings and present results of fast on-the-fly in-situ investigations performed on continuous carbon fiber reinforced specimens of the same AM build. During these investigations, specimens are loaded under the same conditions while fast XCT scans, with a total scan time of 12 seconds each, were performed consecutively. The resulting three-dimensional image data reveals internal meso- and macro-structural changes over time/strain to find the cause of the aforementioned reduction in tensile stress.