Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bormann, Franz

  • Google
  • 3
  • 10
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Experimental and numerical analysis of strength and deformation of large‐scale steel‐composite adhesive joints subjected to fatigue followed by static loadingcitations
  • 2020Modelling of crack propagation:Comparison of discrete lattice system and cohesive zone model1citations
  • 2020MODELLING OF CRACK PROPAGATION: COMPARISON OF DISCRETE LATTICE SYSTEM AND COHESIVE ZONE MODEL1citations

Places of action

Chart of shared publication
Jaiswal, Pankaj
1 / 7 shared
De Waele, Wim
1 / 78 shared
Iyer Kumar, Rahul
1 / 7 shared
Juwet, Thibault
1 / 4 shared
Luyckx, Geert
1 / 34 shared
Mouton, Luc
1 / 6 shared
Verhaeghe, Cedric
1 / 2 shared
Peerlings, Ron H. J.
1 / 5 shared
Rokoš, Ondřej
1 / 10 shared
Mikeš, Karel
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Jaiswal, Pankaj
  • De Waele, Wim
  • Iyer Kumar, Rahul
  • Juwet, Thibault
  • Luyckx, Geert
  • Mouton, Luc
  • Verhaeghe, Cedric
  • Peerlings, Ron H. J.
  • Rokoš, Ondřej
  • Mikeš, Karel
OrganizationsLocationPeople

article

MODELLING OF CRACK PROPAGATION: COMPARISON OF DISCRETE LATTICE SYSTEM AND COHESIVE ZONE MODEL

  • Bormann, Franz
Abstract

<jats:p>Lattice models are often used to analyze materials with discrete micro-structures mainly due to their ability to accurately reflect behaviour of individual fibres or struts and capture macroscopic phenomena such as crack initiation, propagation, or branching. Due to the excessive number of discrete interactions, however, such models are often computationally expensive or even intractable for realistic problem dimensions. Simplifications therefore need to be adopted, which allow for efficient yet accurate modelling of engineering applications. For crack propagation modelling, the underlying discrete microstructure is typically replaced with an effective continuum, whereas the crack is inserted as an infinitely thin cohesive zone with a specific traction-separation law. In this work, the accuracy and efficiency of such an effective cohesive zone model is evaluated against the full lattice representation for an example of crack propagation in a three-point bending test. The variational formulation of both models is provided, and obtained results are compared for brittle and ductile behaviour of the underlying lattice in terms of force-displacement curves, crack opening diagrams, and crack length evolutions. The influence of the thickness of the process zone, which is present in the full lattice model but neglected in the effective cohesive zone model, is studied in detail.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • crack
  • bending flexural test