People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fíla, Tomáš
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Ageing effects on the mechanical properties stability of 3D printed material under compression
- 2023Response of the ultra high performance concrete under dynamic compressive loadingcitations
- 2023Effect of aging on mechanical properties of 3D printed samples using stereolitography
- 2022Strain Rate-Dependent Compressive Properties of Bulk Cylindrical 3D-Printed Samples from 316L Stainless Steelcitations
- 2021Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization
- 2020Dynamic Deformation Behaviour of Chiral Auxetic Lattices at Low and High Strain-Ratescitations
- 2019Strain Dependency of Poisson's Ratio of SLS Printed Auxetic Lattices Subjected to Quasi‐Static and Dynamic Compressive Loadingcitations
- 2019STRAIN-RATE AND PRINTING DIRECTION DEPENDENCY OF COMPRESSIVE BEHAVIOUR OF 3D PRINTED STAINLESS STEEL 316Lcitations
- 2019COMPRESSIVE PROPERTIES OF AUXETIC STRUCTURES WITH CONTROLLED STIFFNESS OF STRUT JOINTScitations
- 2018Testing of Auxetic Materials Using Hopkinson Bar and Digital Image Correlationcitations
- 2018IMPACT TESTING OF ORDNANCE GELATINE UNDER MODERATE STRAIN RATE CONDITIONS
Places of action
Organizations | Location | People |
---|
article
IMPACT TESTING OF ORDNANCE GELATINE UNDER MODERATE STRAIN RATE CONDITIONS
Abstract
<jats:p>An experimental study on energy absorption capabilities and strain rate sensitivity of ordnance gelatine was performed. Strain energy density under quasi static compression and moderate strain rate impact tests was compared. In the study two types of material were tested, bulk ordnance gelatine and polymeric open-cell meshwork filled with ordnance gelatine. From the results a significant strain-rate effect was observed in terms of ultimate compressive strength and strain energy density. In comparison of the deformation behaviour under quasi static conditions and drop weight test the difference was very significant, however slight increase in both strength and strain energy density was observed even between different impact energies and velocities during the impact testing. The peak acceleration was significantly reduced in polymer meshwork filled by gelatine in comparison to the bulk gelatine.</jats:p>