Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Sam

  • Google
  • 2
  • 6
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model5citations
  • 2012Data-constrained microstructure modeling with multi-spectrum X-ray CT23citations

Places of action

Chart of shared publication
Phuoc, Hung Do
1 / 1 shared
Hoang, Phu Nguyen
1 / 1 shared
Fraser, Darren
1 / 6 shared
Nguyen, Vu
1 / 16 shared
Trinchi, Adrian
1 / 7 shared
Tulloh, Andrew
1 / 1 shared
Chart of publication period
2023
2012

Co-Authors (by relevance)

  • Phuoc, Hung Do
  • Hoang, Phu Nguyen
  • Fraser, Darren
  • Nguyen, Vu
  • Trinchi, Adrian
  • Tulloh, Andrew
OrganizationsLocationPeople

article

Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model

  • Phuoc, Hung Do
  • Hoang, Phu Nguyen
  • Fraser, Darren
  • Nguyen, Vu
  • Yang, Sam
Abstract

<jats:p>Previous studies have demonstrated the ability of osseointegration of porous titanium implants in cancellous bone. Our study was designed to (i) investigate the ability of bone ingrowth into 3D-printed porous titanium alloy implant on the cortical bone of rabbits using CT-scan and histology, and (ii) to identify the consistency of the radiology information between clinical Cone Beam Computed Tomography (CBCT) and Micro Computed Tomography (μCT) in the evaluation of bone ingrowth. The porous titanium alloy implants were 3D-printed employing the Electron Beam Melting (EBM) technology with an intended pore size of 600 μm and porosity of approximately 50 percent. Each implant was inserted into tibial diaphysis in one rabbit and its pores were classified as contacting bone or non-contacting bone. Depending on the time of explantation, the rabbits were divided into two groups: group 1 consisting of 6 rabbits between 13 and 20 weeks and group 2 consisting of 6 rabbits between 26 and 32 weeks. Tissue ingrowth into the non-bone contacting pores were evaluated by CBCT and histology. μCT was used to further investigate the bone ingrowth into four implants (two from each group were randomly chosen). The CBCT detected the present of tissue with bone-like density in both bone-contacting pores and non-bone-contacting pores of all implants. The μCT analysis also supported this result. All the bone-like tissues were then histologically confirmed to be mature bone. The analysis of CBCT data to assess bone ingrowth in porous implants had the sensitivity, specificity, positive and negative predictive values of 85, 84, 93 and 70 percent, respectively, when considering μCT assessment as the gold standard. Fully porous titanium alloy implant has great potential to reconstruct diaphyseal bone defect due to its good ability of osseointegration. CBCT is a promising method for evaluation of bone ingrowth into porous implants.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • tomography
  • gold
  • titanium
  • titanium alloy
  • porosity
  • electron beam melting