Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dreisigacker, Susanne

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022QTL mapping of seedling and field resistance to stem rust in DAKIYE/Reichenbachii durum wheat population3citations

Places of action

Chart of shared publication
Sorrells, Mark Earl
1 / 1 shared
Brown-Guedira, Gina
1 / 1 shared
Ward, Brian
1 / 4 shared
Randhawa, Mandeep
1 / 1 shared
Acevedo, Maricelis
1 / 1 shared
Bergstrom, Gary Carlton
1 / 1 shared
Ammar, Karim
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sorrells, Mark Earl
  • Brown-Guedira, Gina
  • Ward, Brian
  • Randhawa, Mandeep
  • Acevedo, Maricelis
  • Bergstrom, Gary Carlton
  • Ammar, Karim
OrganizationsLocationPeople

article

QTL mapping of seedling and field resistance to stem rust in DAKIYE/Reichenbachii durum wheat population

  • Sorrells, Mark Earl
  • Brown-Guedira, Gina
  • Ward, Brian
  • Dreisigacker, Susanne
  • Randhawa, Mandeep
  • Acevedo, Maricelis
  • Bergstrom, Gary Carlton
  • Ammar, Karim
Abstract

<jats:p>Stem rust caused by the fungus <jats:italic>Puccinia graminis</jats:italic> f.sp. <jats:italic>tritici</jats:italic> Eriks. &amp; E. Henn. (<jats:italic>Pgt</jats:italic>) threatens the global production of both durum wheat (<jats:italic>Triticum</jats:italic> t<jats:italic>urgidum</jats:italic> L. ssp. <jats:italic>durum</jats:italic> (Desf.) Husnot<jats:bold>)</jats:bold> and common wheat (<jats:italic>Triticum aestivum</jats:italic> L.). The objective of this study was to evaluate a durum wheat recombinant inbred line (RIL) population from a cross between a susceptible parent ‘DAKIYE’ and a resistant parent ‘Reichenbachii’ developed by the International Center for the Improvement of Maize and Wheat (CIMMYT) 1) for seedling response to races JRCQC and TTRTF and 2) for field response to a bulk of the current <jats:italic>Pgt</jats:italic> races prevalent in Ethiopia and Kenya and 3) to map loci associated with seedling and field resistances in this population. A total of 224 RILs along with their parents were evaluated at the seedling stage in the Ethiopian Institute for Agricultural Research greenhouse at Debre Zeit, Ethiopia and in the EIAR and KALRO fields in Ethiopia and Kenya, for two seasons from 2019 to 2020. The lines were genotyped using the genotyping-by-sequencing approach. A total of 843 single nucleotide polymorphism markers for 175 lines were used for quantitative trait locus (QTL) analyses. Composite interval mapping (CIM) identified three QTL on chromosomes 3B, 4B and 7B contributed by the resistant parent. The QTL on chromosome 3B was identified at all growth stages and it explained 11.8%, 6.5%, 6.4% and 15.3% of the phenotypic variation for responses to races JRCQC, TTRTF and in the field trials ETMS19 and KNMS19, respectively. The power to identify additional QTL in this population was limited by the number of high-quality markers, since several markers with segregation distortion were eliminated. A cytological study is needed to understand the presence of chromosomal rearrangements. Future evaluations of additional durum lines and RIL families identification of durable adult plant resistance sources is crucial for breeding stem rust resistance in durum wheat in the future.</jats:p>

Topics
  • impedance spectroscopy
  • composite