Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schvartzman, Mark

  • Google
  • 1
  • 10
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Nanocomposite coatings for the prevention of surface contamination by coronavirus12citations

Places of action

Chart of shared publication
Nun, Haggai Ben
1 / 1 shared
Tzadka, Sivan
1 / 2 shared
Saux, Guillaume Le
1 / 2 shared
Toledo, Esti
1 / 1 shared
Porgador, Angel
1 / 1 shared
Dim, Sharon
1 / 1 shared
Ottolenghi, Aner
1 / 1 shared
Eisner, Nadav
1 / 1 shared
Edri, Avishay
1 / 1 shared
Greenshpan, Yariv
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Nun, Haggai Ben
  • Tzadka, Sivan
  • Saux, Guillaume Le
  • Toledo, Esti
  • Porgador, Angel
  • Dim, Sharon
  • Ottolenghi, Aner
  • Eisner, Nadav
  • Edri, Avishay
  • Greenshpan, Yariv
OrganizationsLocationPeople

article

Nanocomposite coatings for the prevention of surface contamination by coronavirus

  • Schvartzman, Mark
  • Nun, Haggai Ben
  • Tzadka, Sivan
  • Saux, Guillaume Le
  • Toledo, Esti
  • Porgador, Angel
  • Dim, Sharon
  • Ottolenghi, Aner
  • Eisner, Nadav
  • Edri, Avishay
  • Greenshpan, Yariv
Abstract

<jats:p>The current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces. We developed antiviral surfaces by preparing suspensions of copper and cupric oxide nanoparticles in two different polymer matrices, poly(methyl methacrylate) and polyepoxide. For total copper contents as low as 5%, the composite material showed remarkable antiviral properties against the HCoV‐OC43 human coronavirus and against a model lentivirus and proved well-resistant to accelerated aging conditions. Importantly, we showed that the Cu/CuO mixture showed optimal performances. This product can be implemented to produce a simple and inexpensive coating with long-term antiviral properties and will open the way to developing surface coatings against a broad spectrum of pathogens including SARS-CoV-2.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • copper
  • aging
  • aging