People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pintado, Maria Manuela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024ATR-FTIR as a high throughput tool for quick screening of lipolysis in 3T3- L1 adipocytes
- 2024Unravelling the effects of extrusion and drying temperatures on the radical scavenging capacity of aquafeeds supplemented with mango and pineapple by-productscitations
- 2023Sustainable & integrative approach for valorisation of citrus by-products in the Mediterranean
- 2021Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
- 2021Chitosan-olive oil microparticles for phenylethyl isothiocyanate deliverycitations
- 2021Valorisation of mussel mytilus galloprovincialis meat waste to produce bioactive extracts by enzymatic hydrolysis
- 2019Collagen-based bioactive hydrolysates production from blue shark skin
- 2019Organic nanocomposites for the delivery of bioactive moleculescitations
- 2019Organic nanocomposites for the delivery of bioactive moleculescitations
- 2018Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptidecitations
- 2015Evaluation of the interactions between rosmarinic acid and bovine milk caseincitations
- 2015Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrincitations
- 2013A novel direct contact method for the assessment of the antimicrobial activity of dental cementscitations
Places of action
Organizations | Location | People |
---|
article
Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
Abstract
Phenylethyl isothiocyanate (PEITC), a chemopreventive compound, is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility. This restricts its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) was implemented through a 3-level factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterised by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.