Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garteiser, Philippe

  • Google
  • 2
  • 9
  • 30

Center for Research on Inflammation

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Necro-inflammatory activity grading in chronic viral hepatitis with three-dimensional multifrequency MR elastography.10citations
  • 2014Viscoelastic parameters for quantifying liver fibrosis20citations

Places of action

Chart of shared publication
Albuquerque, Miguel
1 / 1 shared
Doblas, Sabrina
1 / 1 shared
Wagner, Mathilde
1 / 1 shared
Beers, Bernard E. Van
1 / 1 shared
Vilgrain, Valérie
1 / 2 shared
Paradis, Valérie
1 / 1 shared
Sinkus, Ralph
1 / 15 shared
Lambert, Simon A.
1 / 3 shared
Ronot, Maxime
1 / 1 shared
Chart of publication period
2021
2014

Co-Authors (by relevance)

  • Albuquerque, Miguel
  • Doblas, Sabrina
  • Wagner, Mathilde
  • Beers, Bernard E. Van
  • Vilgrain, Valérie
  • Paradis, Valérie
  • Sinkus, Ralph
  • Lambert, Simon A.
  • Ronot, Maxime
OrganizationsLocationPeople

article

Viscoelastic parameters for quantifying liver fibrosis

  • Albuquerque, Miguel
  • Doblas, Sabrina
  • Wagner, Mathilde
  • Beers, Bernard E. Van
  • Vilgrain, Valérie
  • Paradis, Valérie
  • Sinkus, Ralph
  • Lambert, Simon A.
  • Garteiser, Philippe
  • Ronot, Maxime
Abstract

<p>OBJECTIVE: To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis.</p><p>MATERIALS AND METHODS: The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5 ± 2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures.</p><p>RESULTS: At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p&lt;0.0001). This parameter had an Obuchowski measure of 0.89+/-0.03. This measure was significantly larger than that of the loss modulus (0.78+/-0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/-0.03, p = 0.84).</p><p>CONCLUSION: Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus.</p>

Topics
  • impedance spectroscopy
  • Carbon