People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Prashant K.
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal propertiescitations
- 2022Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applicationscitations
- 2021Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubulescitations
- 2019Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structurecitations
- 2019Chemical efficacy of several NaOCl concentrations on biofilms of different architecturecitations
- 2019Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady-state dual-species biofilmscitations
- 2018Notochordal cell matrix as a bioactive lubricant for the osteoarthritic jointcitations
- 2017Implant Failurecitations
- 2013Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilmscitations
- 2013A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilmscitations
- 2009Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots
- 2009Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steelcitations
- 2009Hyphal content determines the compression strength of Candida albicans biofilmscitations
- 2008Physicochemical and microbial fouling characterization of novel, extremely hydrophobic, nanocomposite diamond like carbon polymer hybrid coatings
- 2007Low-load compression testingcitations
- 2007Low-load compression testing:a novel way of measuring biofilm thicknesscitations
- 2001Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide mineralscitations
Places of action
Organizations | Location | People |
---|
article
Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilms
Abstract
Biofilm-related infections can develop everywhere in the human body and are rarely cleared by the host immune system. Moreover, biofilms are often tolerant to antimicrobials, due to a combination of inherent properties of bacteria in their adhering, biofilm mode of growth and poor physical penetration of antimicrobials through biofilms. Current understanding of biofilm recalcitrance toward antimicrobial penetration is based on qualitative descriptions of biofilms. Here we hypothesize that stress relaxation of biofilms will relate with antimicrobial penetration. Stress relaxation analysis of single-species oral biofilms grown in vitro identified a fast, intermediate and slow response to an induced deformation, corresponding with outflow of water and extracellular polymeric substances, and bacterial re-arrangement, respectively. Penetration of chlorhexidine into these biofilms increased with increasing relative importance of the slow and decreasing importance of the fast relaxation element. Involvement of slow relaxation elements suggests that biofilm structures allowing extensive bacterial re-arrangement after deformation are more open, allowing better antimicrobial penetration. Involvement of fast relaxation elements suggests that water dilutes the antimicrobial upon penetration to an ineffective concentration in deeper layers of the biofilm. Next, we collected biofilms formed in intra-oral collection devices bonded to the buccal surfaces of the maxillary first molars of human volunteers. Ex situ chlorhexidine penetration into two weeks old in vivo formed biofilms followed a similar dependence on the importance of the fast and slow relaxation elements as observed for in vitro formed biofilms. This study demonstrates that biofilm properties can be derived that quantitatively explain antimicrobial penetration into a biofilm.