People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Campbell, Richard A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant:Transition from synergy to competition
- 2021Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterningcitations
- 20203D texturing of the air–water interface by biomimetic self-assemblycitations
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2019Polydopamine layer formation at the liquid – gas interfacecitations
- 2016Smart nanogels at the air/water interfacecitations
- 2016Smart nanogels at the air/water interface:Structural studies by neutron reflectivitycitations
- 2015On the formation of dendrimer/nucleolipids surface films for directed self-assemblycitations
- 2013New method to predict the surface tension of complex synthetic and biological polyelectrolyte/surfactant mixturescitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometrycitations
- 2011Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air-Water Interface Studied by Neutron Reflectometrycitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixturescitations
- 2010New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/Surfactant Mixturescitations
- 2008Competitive adsorption of neutral comb polymers and sodium dodecyl sulfate at the air/water interfacecitations
- 2007Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interfacecitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interface:Separation of bulk and adsorbed surfactant signalscitations
- 2005External reflection fourier transform infrared spectroscopy of surfactants at the air-water interfacecitations
- 2004External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylindercitations
Places of action
Organizations | Location | People |
---|
article
External reflection fourier transform infrared spectroscopy of surfactants at the air-water interface
Abstract
<p>External reflection Fourier transform infrared spectroscopy (ERFTIRS) has been used to obtain spectra of monolayers of the hydrocarbon surfactant octaethylene glycol monodecyl ether (C<sub>10</sub>E<sub>8</sub>) and the fluorocarbon surfactant ammonium perfluorononanoate (APFN) at the expanding liquid surface of an overflowing cylinder. The use of target factor analysis (TFA) to separate out the contributions of water, adsorbed surfactant, and dissolved surfactant is demonstrated. For both surfactants, there is a linear relationship between the component weight of the adsorbed surfactant, obtained by TFA, and the surface excess determined independently by ellipsometry or neutron reflection. This linear relationship suggests that the monolayers behave like isotropic films with a constant density. A sensitivity of less than 10% of a monolayer is demonstrated. The benefits of using a multivariate curve fitting procedure to analyze sets of ER-FTIR spectra are discussed and some potential pitfalls are identified. This technique is also applicable to static interfaces.</p>