People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Franz, Yohann
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Laser processed semiconductors for integrated photonic devices
- 2019Laser processing of amorphous semiconductors on planar substrates for photonic and optoelectronic applications
- 2017Laser annealing of low temperature deposited silicon waveguidescitations
- 2017Phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Post-fabrication phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Tapered silicon core fibers with nano-spikes for optical coupling via spliced silica fiberscitations
- 2015A silicon/lithium niobate hybrid photonic material platform produced by laser processing
Places of action
Organizations | Location | People |
---|
article
Post-fabrication phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguides
Abstract
We demonstrate a novel high-accuracy post-fabrication trimming technique to fine-tune the phase of integrated Mach-Zehnder Interferometers (MZIs), enabling permanent correction of typical fabrication based phase errors. The effective index change of the optical mode is 0.19 in our measurement, which is approximately an order of magnitude improvement compared to previous work with similar excess optical loss. Our measurement results suggest that a phase accuracy of 0.078 rad was achievable with active feedback control.