People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorecki, Jonathan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzlecitations
- 2020Optically reconfigurable graphene/metal metasurface on Fe:LiNbO3 for adaptive THz opticscitations
- 20183D-printed polymer antiresonant waveguides for short-reach terahertz applicationscitations
- 2017Light controlled conductivity of graphene on photorefractive lithium niobate
Places of action
Organizations | Location | People |
---|
article
Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle
Abstract
We report the use of a terahertz (THz) transparent material, cyclic olefin copolymer (COC or TOPAS), for fabricating a hollow-core antiresonant fiber that provides an electromagnetic wave guidance in the THz regime. A novel fabrication technique to realize a hollow-core antiresonant polymer optical fiber (HC-ARPF) for THz guidance is proposed and demonstrated. The fiber is directly extruded in a single-step procedure using a conventional fused deposition modeling 3D printer. The fiber geometry is defined by a structured nozzle manufactured with a metal 3D printer, which allows tailoring of the nozzle design to the various geometries of microstructured optical fibers. The possibility to use the HC-ARPF made from TOPAS for guiding in the THz region is theoretically and experimentally assessed through the profile of mode simulation and time-frequency diagram (spectrogram) analysis.