Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barbieri, Stefano

  • Google
  • 1
  • 5
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Real-time, chirped-pulse heterodyne detection at room temperature with 100 GHz 3-dB-bandwidth mid-infrared quantum-well photodetectors14citations

Places of action

Chart of shared publication
Lampin, Jean-Francois
1 / 12 shared
Lin, Quyang
1 / 1 shared
Hakl, Michael
1 / 1 shared
Lepillet, Sylvie
1 / 1 shared
Peytavit, Emilien
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lampin, Jean-Francois
  • Lin, Quyang
  • Hakl, Michael
  • Lepillet, Sylvie
  • Peytavit, Emilien
OrganizationsLocationPeople

article

Real-time, chirped-pulse heterodyne detection at room temperature with 100 GHz 3-dB-bandwidth mid-infrared quantum-well photodetectors

  • Lampin, Jean-Francois
  • Lin, Quyang
  • Hakl, Michael
  • Lepillet, Sylvie
  • Peytavit, Emilien
  • Barbieri, Stefano
Abstract

<jats:p>Thanks to intrinsically short electronic relaxation on the ps time scale, III-V semiconductor unipolar devices are ideal candidates for ultrahigh-speed operation at mid-infrared frequencies. In this work, antenna-coupled, GaAs-based multi-quantum-well photodetectors operating in the 10–11 µm range are demonstrated, with a responsivity of 0.3 A/W and a 3-dB-cutoff bandwidth of 100 GHz at room temperature. The frequency response is measured up to 220 GHz: beyond 100 GHz we find a roll-off dominated by the 2.5-ps-long recombination time of the photo-excited electrons. The potential of the detectors is illustrated by setting up an experiment where the time dependent emission frequency of a quantum cascade laser operated in pulsed mode is measured electronically and in real time, over a frequency range &gt;60GHz. By exploiting broadband electronics, and thanks to its high signal-to-noise ratio, this technique allows the acquisition, in a single-shot, of frequency-calibrated, mid-infrared molecular spectra spanning up to 100 GHz and beyond, which is particularly attractive for fast, active remote sensing applications in fields such as environmental or combustion monitoring.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • combustion
  • III-V semiconductor