Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murphy, Leah

  • Google
  • 2
  • 4
  • 39

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Azimuthal confinement17citations
  • 2022Stack, seal, evacuate, draw: A method for drawing hollow-core fiber stacks under positive and negative pressure22citations

Places of action

Chart of shared publication
Bird, David
1 / 3 shared
Yerolatsitis, Stephanos
1 / 1 shared
Stone, Jim
1 / 2 shared
Birks, Timothy A.
1 / 8 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bird, David
  • Yerolatsitis, Stephanos
  • Stone, Jim
  • Birks, Timothy A.
OrganizationsLocationPeople

article

Azimuthal confinement

  • Bird, David
  • Murphy, Leah
Abstract

<p>Antiresonant, hollow-core optical fibers are currently challenging or even exceeding the loss performance of conventional solid-core fibers. Despite this progress, there are aspects of the guidance mechanism in these fibers that are still not understood. For example, a physical mechanism to explain why negative curvature of the core surround is correlated with low loss remains elusive. It is shown that the glass elements of the cladding structure with an approximately radial orientation play a crucial role in determining the confinement loss by strongly shaping the wave fields in the azimuthal coordinate. This shaping, described as azimuthal confinement, can result in an evanescent field in the radial direction through the cladding, and this leads to a confinement loss that is substantially lower than would be the case without azimuthal confinement. A comprehensive theory of azimuthal confinement is developed, yielding an expression for the confinement loss of any fiber structure with a single antiresonant glass layer between the core and the outer glass jacket. This is tested by comparison with large-scale numerical simulations on two types of cladding structure. It is shown that negative curvature of the core surround has little or no intrinsic role in reducing confinement loss in fibers with a nodeless cladding structure. The power of azimuthal confinement is demonstrated in model structures where the confinement loss drops by more than two orders of magnitude as the radial width of the cladding is increased. It is anticipated that the concept of azimuthal confinement will be valuable in interpreting confinement loss in a wide range of existing antiresonant, hollow-core fibers and in the design of novel, low loss cladding structures.</p>

Topics
  • impedance spectroscopy
  • theory
  • simulation
  • glass
  • glass