People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fasano, Andrea
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preformcitations
- 2019Microstructured Polymer Optical Fiber Gratings and Sensorscitations
- 2018Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials
- 2018Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materialscitations
- 2018Influence of the Cladding Structure in PMMA mPOFs Mechanical Properties for Strain Sensors Applicationscitations
- 2018Mechanical characterization of drawn Zeonex, Topas, polycarbonate and PMMA microstructured polymer optical fibrescitations
- 2017Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensingcitations
- 2017Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratingscitations
- 2017Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensingcitations
- 2017Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperaturecitations
- 2017Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensingcitations
- 2016Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensorscitations
- 2016Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensorcitations
- 2016Investigation of the in-solution relaxation of polymer optical fibre Bragg gratings
- 2016Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensorscitations
- 2016Creation of a microstructured polymer optical fiber with UV Bragg grating inscription for the detection of extensions at temperatures up to 125°Ccitations
- 2016Polymer Optical Fibre Bragg Grating Humidity Sensor at 100ºC
- 2015Humidity insensitive step-index polymer optical fibre Bragg grating sensorscitations
- 20153D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication
- 2015Production and Characterization of Polycarbonate Microstructured Polymer Optical Fiber Bragg Grating Sensor
Places of action
Organizations | Location | People |
---|
article
Mechanical characterization of drawn Zeonex, Topas, polycarbonate and PMMA microstructured polymer optical fibres
Abstract
The mechanical stress-strain behaviour of polymer optical fibres (POFs) drawn from various materials was measured, both before and after temperature annealing of the POFs. The POFs were drawn from PMMA (GEHR), Zeonex (480R), PC (Makrolon LED2245) and two different grades of Topas (8007S-04 and 5013S-04). With fibre drawing stresses at or above the elastic (uniaxial extensional) plateau modulus, the polymer chains in the POFs have a high degree of alignment, which has a large impact on fibre mechanical behaviour. The testing was performed at straining rates ranging from 0.011s, to 1.1s for the un-annealed fibres and a straining rate of 1.1s for the annealed ones. The elastic modulus of the tested POFs showed no sensitivity toward variation of straining rate. In the case of Topas 5013S-04 and PMMA, the producer-reported values are the same as the one obtained here for the POFs both before and after annealing. The drawn POFs made of Zeonex, PC, and Topas 8007S-04 exhibit larger elastic modulus than the respective materials in the bulk form. The elastic modulus of these fibres is reduced upon annealing by 10-15 but still remains above the producer-reported values for the bulk polymers. In the nonlinear elastic region, only the PC POF is statistically unaffected by the changes in the straining rate, while Topas 8007S-04 POF shows insensitivity to the straining rate until 3% strain. All other changes affect the stress-strain curves. The annealing flattens all stress-strain curves, making the fibres more sensitive to yield.