People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Awan, Kashif M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2017Gallium nitride on gallium oxide substrate for integrated nonlinear opticscitations
- 2017Fabrication and optical characterization of GaN waveguides on (−201)-oriented β-Ga_2O_3citations
- 2016Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths
Places of action
Organizations | Location | People |
---|
article
Fabrication and optical characterization of GaN waveguides on (−201)-oriented β-Ga_2O_3
Abstract
Gallium nitride (GaN), a wide-bandgap III-V semiconductor material with a bandgap wavelength λ = 366 nm (for Wurtzite GaN) and transparency window covering the visible spectrum, has a large number of applications for photonics and optoelectronics. However, the optical quality of this material suffers from growth imperfections due to the lack of a suitable substrate. Recent studies have shown that GaN grown on (-201) β - GaO (gallium oxide) has better lattice matching and hence superior optical quality as compared to GaN grown traditionally on AlO (sapphire). In this work, we report on the fabrication of GaN waveguides on GaO substrate, followed by a wet-etch process aimed at the reduction of waveguide surface roughness and improvement of side-wall verticality in these waveguides. The propagation loss in the resulting waveguides has been experimentally determined to be 7.5 dB/cm.