Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nadtochiy, A.

  • Google
  • 2
  • 12
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Photovoltaic Characterization of Si and SiGe Surfaces Sonochemically Treated in Dichloromethanecitations
  • 2017Mid-IR optical properties of silicon doped InP18citations

Places of action

Chart of shared publication
Podolian, A.
1 / 1 shared
Shmid, V.
1 / 1 shared
Korotchenkov, O.
1 / 1 shared
Semenko, M.
1 / 1 shared
Iazykov, Dmytro
1 / 1 shared
Semenova, Elizaveta
1 / 15 shared
Norrman, Kion
1 / 40 shared
Pryds, Nini
1 / 133 shared
Panah, Mohammad Esmail Aryaee
1 / 6 shared
Zhukov, A. E.
1 / 4 shared
Lavrinenko, Andrei V.
1 / 98 shared
Han, Li
1 / 20 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Podolian, A.
  • Shmid, V.
  • Korotchenkov, O.
  • Semenko, M.
  • Iazykov, Dmytro
  • Semenova, Elizaveta
  • Norrman, Kion
  • Pryds, Nini
  • Panah, Mohammad Esmail Aryaee
  • Zhukov, A. E.
  • Lavrinenko, Andrei V.
  • Han, Li
OrganizationsLocationPeople

article

Mid-IR optical properties of silicon doped InP

  • Semenova, Elizaveta
  • Norrman, Kion
  • Pryds, Nini
  • Panah, Mohammad Esmail Aryaee
  • Zhukov, A. E.
  • Nadtochiy, A.
  • Lavrinenko, Andrei V.
  • Han, Li
Abstract

InP is one of the most important materials for optoelectronics as a direct bandgap semiconductor, which can also be regarded as a low loss alternative plasmonic material for mid-infrared (mid-IR). The InP films studied in this work were grown by metal-organic vapor phase epitaxy (MOVPE). The effect of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 μm was studied. The carrier concentration of up to 3.9 × 10<sup>19</sup> cm<sup>-3</sup> is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma frequency were determined by Fourier transform infrared spectroscopy (FTIR) for different carrier density levels. The plasma frequency can be tuned effectively via doping from 18.43 to 50.5 THz. Based on the experimental results, a semi-empirical formula for the plasma frequency, as a function of carrier concentration, is derived. Comparison to other semiconductors shows superior plasmonic performance of InP:Si in terms of propagation length and surface confinement.

Topics
  • density
  • impedance spectroscopy
  • surface
  • phase
  • semiconductor
  • Silicon
  • Fourier transform infrared spectroscopy