People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Han, Li
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Interface fracture energy of contact layers in a solid oxide cell stackcitations
- 2018High-temperature thermoelectric properties of Na- and W-Doped Ca3Co4O9 system citations
- 2017Mid-IR optical properties of silicon doped InPcitations
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluridecitations
- 2016Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric materialcitations
- 2016Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesiscitations
- 2014Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9citations
- 2014The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications
- 2014Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3citations
- 2014Characterization of the interface between an Fe–Cr alloy and the p -type thermoelectric oxide Ca 3 Co 4 O 9citations
- 2014Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb 3citations
- 2013The Influence of α- and γ-Al 2 O 3 Phases on the Thermoelectric Properties of Al-doped ZnOcitations
- 2013The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnOcitations
- 2008Formation and microstructure of (Ti, V)C-reinforeed iron-matrix composites using self-propagating high-temperature synthesis
- 2006Fretting behaviour of self-piercing riveted aluminium alloy joints under different interfacial conditions
Places of action
Organizations | Location | People |
---|
article
Mid-IR optical properties of silicon doped InP
Abstract
InP is one of the most important materials for optoelectronics as a direct bandgap semiconductor, which can also be regarded as a low loss alternative plasmonic material for mid-infrared (mid-IR). The InP films studied in this work were grown by metal-organic vapor phase epitaxy (MOVPE). The effect of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 μm was studied. The carrier concentration of up to 3.9 × 10<sup>19</sup> cm<sup>-3</sup> is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma frequency were determined by Fourier transform infrared spectroscopy (FTIR) for different carrier density levels. The plasma frequency can be tuned effectively via doping from 18.43 to 50.5 THz. Based on the experimental results, a semi-empirical formula for the plasma frequency, as a function of carrier concentration, is derived. Comparison to other semiconductors shows superior plasmonic performance of InP:Si in terms of propagation length and surface confinement.