People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Takayama, Osamu
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Alternative Plasmonic Materials for Biochemical Sensing: a Review (Invited Review)citations
- 2024Titanium Nitride Nanotrench Metasurfaces for Mid-infrared Chemical Sensingcitations
- 2023Optical properties of plasmonic titanium nitride thin films from ultraviolet to mid-infrared wavelengths deposited by pulsed-DC sputtering, thermal and plasma-enhanced atomic layer depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2021Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengthscitations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Fabrication of hollow coaxial Al 2 O 3 /ZnAl 2 O 4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2020Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2020Wave Front Tuning of Coupled Hyperbolic Surface Waves on Anisotropic Interfacescitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Optical properties of titanium nitride films under low temperature
- 2019Optical properties of titanium nitride films under low temperature
- 2019Cryogenic characterization of titanium nitride thin filmscitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Optics with hyperbolic materialscitations
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Optics with hyperbolic materialscitations
- 2019Lamellas metamaterials: Properties and potential applications
- 2019Lamellas metamaterials: Properties and potential applications
- 2018Initial Investigation for the Fabrication of Hyperbolic Metamaterials Based on Ultra-Thin Au Layers
- 2018Experimental observation of Dyakonov plasmons in the mid-infraredcitations
- 2017Advanced fabrication of hyperbolic metamaterials
- 2017Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials.citations
- 2017Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics
- 2016Highly doped InP as a low loss plasmonic material for mid-IR regioncitations
- 2016Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer depositioncitations
- 2016Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range
- 2016Fabrication of high aspect ratio TiO 2 and Al 2 O 3 nanogratings by atomic layer depositioncitations
- 2016Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements
Places of action
Organizations | Location | People |
---|
article
Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials.
Abstract
High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer<br/>deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates with different Al concentrations at 150-250 °C. For each temperature and Al concentration the ALD growth behavior, crystalline structure, physical, electrical and optical properties were investigated. It was found that AZO films deposited at 250 °C exhibit the most pronounced plasmonic behavior with the highest plasma frequency. During pillar fabrication, AZO conformally passivates the silicon template, which is characteristic of typical ALD growth conditions. The last step of fabrication is heavily dependent on the selective chemistry of the SF6 plasma. It was shown that silicon between AZO structures can be selectively removed with no observable influence on the ALD deposited coatings. The prepared free-standing AZO structures were characterized using Fourier transform infrared spectroscopy (FTIR). The restoration of the effective permittivities of the structures reveals that their anisotropy significantly deviates from the effective medium approximation (EMA) prognoses. It suggests that the permittivity of the AZO in tightly confined nanopillars is very different from that of flat AZO films.