Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schröder, Frederik

  • Google
  • 1
  • 9
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavity13citations

Places of action

Chart of shared publication
Stenger, Nicolas
1 / 14 shared
Yvind, Kresten
1 / 17 shared
Semenova, Elizaveta
1 / 15 shared
Casses, Laura
1 / 1 shared
Yu, Yi
1 / 3 shared
Xiong, Meng
1 / 1 shared
Christiansen, Rasmus Ellebæk
1 / 3 shared
Sigmund, Ole
1 / 47 shared
Moerk, Jesper
1 / 20 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Stenger, Nicolas
  • Yvind, Kresten
  • Semenova, Elizaveta
  • Casses, Laura
  • Yu, Yi
  • Xiong, Meng
  • Christiansen, Rasmus Ellebæk
  • Sigmund, Ole
  • Moerk, Jesper
OrganizationsLocationPeople

article

Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavity

  • Stenger, Nicolas
  • Yvind, Kresten
  • Semenova, Elizaveta
  • Casses, Laura
  • Schröder, Frederik
  • Yu, Yi
  • Xiong, Meng
  • Christiansen, Rasmus Ellebæk
  • Sigmund, Ole
  • Moerk, Jesper
Abstract

<p>We experimentally demonstrate an InP nanocavity with a mode volume of 0.26 (λ/2n)<sup>3</sup>. This is an order of magnitude smaller than the mode volumes previously demonstrated in photonic crystal point-defect cavities realized in III-V materials and four times smaller than what is often referred to as the diffraction-limited volume, Vλ= (λ/2n)<sup>3</sup>. The nanocavity is designed using topology optimization, taking into account fabrication limitations, which are pushed compared to the state-of-the-art. This work thus introduces a new class of cavities featuring extreme dielectric confinement (EDC) into the realm of III-V semiconductors, offering order-of-magnitude Purcell-enhancement of the radiative rate. EDC nanocavities may thus be employed to significantly improve the properties of nanolasers, nanoLEDs and single-photon sources, among other applications.</p>

Topics
  • impedance spectroscopy
  • defect
  • III-V semiconductor