People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schulz, K. Marvin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates
Abstract
We use a modified Teng-Man technique to investigate the poling induced electro-optic activity of chromophore-doped organic polymers poled on silicon substrate in a thin film sample configuration. We reveal a fundamental difference between the poling processes on silicon substrate and ITO substrate. The electro-optic activity for polymers poled on silicon substrate is reduced which we ascribe to space charge formation at the silicon - organic interface that distorts the field distribution in the polymer film during high field poling, and therefore limits the effective induced polar order. We demonstrate that the electro-optic activity on silicon substrate can be improved by inserting a 5 nm thin dielectric layer of Al<sub>2</sub>O<sub>3</sub>q between the silicon substrate and the polymer which reduces the leakthrough current during poling, thereby allowing for higher applicable poling voltages.