People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wackerow, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Laser-engineered nanocomposites for SERS applications
- 2023Efficient Combination of Surface Texturing and Functional Coating for Very Low Secondary Electron Yield Surfaces and Rough Nonevaporable Getter Filmscitations
- 2023Efficient Combination of Surface Texturing and Functional Coating for Very Low Secondary Electron Yield Surfaces and Rough Nonevaporable Getter Filmscitations
- 2020Nanosecond Laser Surface Silver Metallization of Wet Ion Exchanged Glassescitations
- 2019Cryogenic surface resistance of coppercitations
- 2019Cryogenic surface resistance of copper:Investigation of the impact of surface treatments for secondary electron yield reductioncitations
- 2014DC electric field assisted fabrication and optical analysis of silver-doped nanocomposite glass
- 2013DC electric field assisted fabrication and optical analysis of silver-doped nanocomposite glass
- 2012Diffractive optical element embedded in silver-doped nanocomposite glasscitations
- 2011Homogenous silver-doped nanocomposite glasscitations
- 2007Optical properties of photonic/plasmonic structures in nanocomposite glasscitations
Places of action
Organizations | Location | People |
---|
article
Homogenous silver-doped nanocomposite glass
Abstract
Silver nanoparticles are generated in glass by a dry process. First silver ions are driven into the glass by electric field-assisted ion exchange. Subsequent annealing in air led to the formation of silver nanoparticles beneath the surface of the glass. A thin slice of the cross section of the sample was prepared. This visualization of the depth profile facilitated optical analysis of the embedded layer containing silver nanoparticles to be preformed. We observed that there were narrower plasmon bands close to the sample surface and wider plasmon bands in lower layers. It is attributed to the formation of larger nanoparticles with lower number density close to the surface and slightly smaller nanoparticles with higher number density in the depth of the sample. (C) 2011 Optical Society of America