Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ososkov, Yan

  • Google
  • 4
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Visible silica fiber laser based on Dy:BaF2 nanoparticle doping2citations
  • 2023Metal-coated fluoride glass fiber3citations
  • 2023High-efficiency fluoroindate glass fiber laser12citations
  • 2023FBG-stabilized Dysprosium:fluoroindate mid-infrared fiber laser2citations

Places of action

Chart of shared publication
Meehan, Bailey
1 / 1 shared
Cahoon, Mary Ann
1 / 2 shared
Ballato, John
1 / 10 shared
Lee, Jinho
4 / 4 shared
Hawkins, Thomas W.
1 / 2 shared
Bernard, Rémy
1 / 2 shared
Pastre, Aymeric
1 / 1 shared
Cozic, Solenn
1 / 4 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Meehan, Bailey
  • Cahoon, Mary Ann
  • Ballato, John
  • Lee, Jinho
  • Hawkins, Thomas W.
  • Bernard, Rémy
  • Pastre, Aymeric
  • Cozic, Solenn
OrganizationsLocationPeople

article

High-efficiency fluoroindate glass fiber laser

  • Lee, Jinho
  • Ososkov, Yan
Abstract

<p>We report the high-efficiency operation of a 3.05 µm dysprosium-doped fluoroindate glass fiber laser that is in-band pumped at 2.83 µm using an erbium-doped fluorozirconate glass fiber laser. The demonstrated slope efficiency of the free-running laser of 82% represents approximately 90% of the Stokes efficiency limit; a maximum output power of 0.36 W, the highest for a fluoroindate glass fiber laser, was recorded. Narrow-linewidth wavelength stabilization at 3.2 µm was achieved by utilizing a first-reported, to the best of our knowledge, high-reflectivity fiber Bragg grating inscribed in the Dy<sup>3</sup><sup>+</sup>-doped fluoroindate glass. These results lay the foundation for future power-scaling of mid-infrared fiber lasers using fluoroindate glass.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • Dysprosium
  • Erbium