People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guillemot, Lauren
Université de Caen Normandie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
In-band pumping of Tm:LiYF 4 channel waveguide: a power scaling strategy for ∼2 μm waveguide lasers
Abstract
We report on a novel power scaling strategy for thulium waveguide (WG) lasers relying on in-band pumping by high-brightness Raman fiber lasers (RFLs) and the use of liquid-phase-epitaxy-grown fluoride crystalline thin films for better thermal management. Thulium channel WGs are produced by microstructuring the Tm3+:LiYF4/LiYF4 epitaxies via diamond-saw dicing. They are pumped by a RFL based on an erbium master oscillator power amplifier and a GeO2-doped silica fiber and emit polarized output at 1679 nm. A CW in-band-pumped (H63→F43) Tm3+:LiYF4 WG laser generates up to 2.05 W of a linearly polarized single-transverse-mode output at 1881 nm with a slope efficiency of 78.3% and a laser threshold of only 12 mW (versus the absorbed pump power).