Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Verheyen, Peter

  • Google
  • 4
  • 24
  • 183

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Wafer-level hermetically sealed silicon photonic MEMS29citations
  • 2022Wafer-level hermetically sealed silicon photonic MEMS29citations
  • 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonics78citations
  • 2012Near-infrared grating couplers for silicon nitride photonic wires47citations

Places of action

Chart of shared publication
Bogaerts, Wim
3 / 7 shared
Wang, Xiaojing
2 / 4 shared
Khan, Muhammad Umar
1 / 2 shared
Gylfason, Kristinn
2 / 3 shared
Bleiker, Simon J.
2 / 7 shared
Jo, Gaehun
2 / 2 shared
Edinger, Pierre
3 / 5 shared
Zand, Iman
2 / 2 shared
Stemme, Göran
2 / 18 shared
Niklaus, Frank
2 / 19 shared
Lee, Jun Su
2 / 2 shared
Takabayashi, Alain
2 / 2 shared
Jezzini, Moises
2 / 2 shared
Sattari, Hamed
3 / 4 shared
Gylfason, Kristinn B.
1 / 6 shared
Takabayashi, Alain Yuji
1 / 1 shared
Quack, Niels
1 / 1 shared
Khan, Umar
2 / 9 shared
Errando-Herranz, Carlos
1 / 5 shared
Selvaraja, Shankar Kumar
1 / 2 shared
Dhakal, Ashim
1 / 1 shared
Baets, Roel
1 / 10 shared
Komorowska, Katarzyna
1 / 1 shared
Subramanian, Ananth
1 / 2 shared
Chart of publication period
2022
2021
2012

Co-Authors (by relevance)

  • Bogaerts, Wim
  • Wang, Xiaojing
  • Khan, Muhammad Umar
  • Gylfason, Kristinn
  • Bleiker, Simon J.
  • Jo, Gaehun
  • Edinger, Pierre
  • Zand, Iman
  • Stemme, Göran
  • Niklaus, Frank
  • Lee, Jun Su
  • Takabayashi, Alain
  • Jezzini, Moises
  • Sattari, Hamed
  • Gylfason, Kristinn B.
  • Takabayashi, Alain Yuji
  • Quack, Niels
  • Khan, Umar
  • Errando-Herranz, Carlos
  • Selvaraja, Shankar Kumar
  • Dhakal, Ashim
  • Baets, Roel
  • Komorowska, Katarzyna
  • Subramanian, Ananth
OrganizationsLocationPeople

article

Silicon photonic microelectromechanical phase shifters for scalable programmable photonics

  • Verheyen, Peter
  • Bogaerts, Wim
  • Errando-Herranz, Carlos
  • Gylfason, Kristinn
  • Takabayashi, Alain
  • Edinger, Pierre
  • Khan, Umar
  • Sattari, Hamed
Abstract

<jats:p>Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2.9</mml:mn><mml:mi>π<!-- π --></mml:mi><mml:mo>±<!-- ± --></mml:mo><mml:mi>π<!-- π --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></jats:inline-formula> phase shift at 1550 nm, with an insertion loss of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>0.33</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>0.10</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:math></jats:inline-formula>, a <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>V</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>10.7</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>1.4</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>2.2</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">V</mml:mi></mml:mrow></mml:math></jats:inline-formula>, and an <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>L</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>17.2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>4.3</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>8.8</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mtext>µ<!-- µ --></mml:mtext><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>. We also measured an actuation bandwidth <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>f</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>3</mml:mn><mml:mspace width="thickmathspace" /><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.</jats:p>

Topics
  • phase
  • Silicon
  • optical rotatory dispersion