People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bogaerts, Wim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Vertical coupling between waveguides and optical fibers utilizing polarization gratingscitations
- 2022Wafer-level hermetically sealed silicon photonic MEMScitations
- 2022Wafer-level hermetically sealed silicon photonic MEMScitations
- 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonicscitations
- 2016Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integrationcitations
- 2014Electro-optic organic crystal silicon high-speed modulatorcitations
- 2013Preferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layerscitations
Places of action
Organizations | Location | People |
---|
article
Silicon photonic microelectromechanical phase shifters for scalable programmable photonics
Abstract
<jats:p>Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2.9</mml:mn><mml:mi>π<!-- π --></mml:mi><mml:mo>±<!-- ± --></mml:mo><mml:mi>π<!-- π --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></jats:inline-formula> phase shift at 1550 nm, with an insertion loss of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>0.33</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>0.10</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:math></jats:inline-formula>, a <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>V</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>10.7</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>1.4</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>2.2</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">V</mml:mi></mml:mrow></mml:math></jats:inline-formula>, and an <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>L</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>17.2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>4.3</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>8.8</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mtext>µ<!-- µ --></mml:mtext><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>. We also measured an actuation bandwidth <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>f</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>3</mml:mn><mml:mspace width="thickmathspace" /><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.</jats:p>