People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khan, Umar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Double-diffusive stagnation point flow over a vertical surface with thermal radiation: Assisting and opposing flowscitations
- 2023Unsteady non-axisymmetric MHD Homann stagnation point flow of CNTs-suspended nanofluid over convective surface with radiation using Yamada–Ota modelcitations
- 2022Wafer-level hermetically sealed silicon photonic MEMScitations
- 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonicscitations
- 2016Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocompositescitations
- 2016Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solventscitations
- 2015Design, fabrication and characterisation of nano-imprinted single mode waveguide structures for intra-chip optical communicationscitations
- 2014Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading levelcitations
- 2012High strength composite fibres from polyester filled with nanotubes and graphenecitations
Places of action
Organizations | Location | People |
---|
article
Silicon photonic microelectromechanical phase shifters for scalable programmable photonics
Abstract
<jats:p>Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2.9</mml:mn><mml:mi>π<!-- π --></mml:mi><mml:mo>±<!-- ± --></mml:mo><mml:mi>π<!-- π --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></jats:inline-formula> phase shift at 1550 nm, with an insertion loss of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>0.33</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>0.10</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:math></jats:inline-formula>, a <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>V</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>10.7</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>1.4</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>2.2</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">V</mml:mi></mml:mrow></mml:math></jats:inline-formula>, and an <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>L</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>17.2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>4.3</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>8.8</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mtext>µ<!-- µ --></mml:mtext><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>. We also measured an actuation bandwidth <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>f</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>3</mml:mn><mml:mspace width="thickmathspace" /><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.</jats:p>