People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Errando-Herranz, Carlos
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Three-dimensional printing of silica glass with sub-micrometer resolutioncitations
- 2023Three-dimensional printing of silica glass with sub-micrometer resolutioncitations
- 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonicscitations
- 2017MEMS tunable silicon photonic grating coupler for post-assembly optimization of fiber-to-chip couplingcitations
- 2013Integration Of Polymer Microfluidic Channels, Vias, And Connectors With Silicon Photonic Sensors By One-Step Combined Photopatterning And Molding Of OSTEcitations
Places of action
Organizations | Location | People |
---|
article
Silicon photonic microelectromechanical phase shifters for scalable programmable photonics
Abstract
<jats:p>Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2.9</mml:mn><mml:mi>π<!-- π --></mml:mi><mml:mo>±<!-- ± --></mml:mo><mml:mi>π<!-- π --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></jats:inline-formula> phase shift at 1550 nm, with an insertion loss of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>0.33</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>0.10</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:math></jats:inline-formula>, a <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>V</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>10.7</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>1.4</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>2.2</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">V</mml:mi></mml:mrow></mml:math></jats:inline-formula>, and an <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>L</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>17.2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>4.3</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>8.8</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mtext>µ<!-- µ --></mml:mtext><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>. We also measured an actuation bandwidth <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>f</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>3</mml:mn><mml:mspace width="thickmathspace" /><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.</jats:p>