Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Errando-Herranz, Carlos

  • Google
  • 5
  • 27
  • 181

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Three-dimensional printing of silica glass with sub-micrometer resolution40citations
  • 2023Three-dimensional printing of silica glass with sub-micrometer resolution40citations
  • 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonics78citations
  • 2017MEMS tunable silicon photonic grating coupler for post-assembly optimization of fiber-to-chip coupling17citations
  • 2013Integration Of Polymer Microfluidic Channels, Vias, And Connectors With Silicon Photonic Sensors By One-Step Combined Photopatterning And Molding Of OSTE6citations

Places of action

Chart of shared publication
Lai, Lee-Lun
2 / 2 shared
Brodin-Laakso, Miku
1 / 1 shared
Gylfason, Kristinn
2 / 3 shared
Hartwig, Oliver
2 / 4 shared
Nyman, Johan
2 / 4 shared
Edinger, Pierre
3 / 5 shared
Stemme, Göran
2 / 18 shared
Duesberg, Georg S.
2 / 26 shared
Niklaus, Frank
2 / 19 shared
Mayer, Joachim
2 / 30 shared
Laakso, Miku
2 / 3 shared
Gylfason, Kristinn B.
3 / 6 shared
Huang, Po-Han
1 / 1 shared
Verheyen, Peter
1 / 4 shared
Bogaerts, Wim
1 / 7 shared
Takabayashi, Alain
1 / 2 shared
Khan, Umar
1 / 9 shared
Sattari, Hamed
1 / 4 shared
Björk, Joel
1 / 1 shared
Colangelo, Marco
1 / 1 shared
Ahmed, Samy
1 / 1 shared
Sandström, Niklas
1 / 5 shared
Haraldsson, Tommy
1 / 10 shared
Wijngaart, Wouter Van Der
1 / 3 shared
Shafagh, Reza Z.
1 / 1 shared
Saharil, Farizah
1 / 3 shared
Mola Romero, Albert
1 / 1 shared
Chart of publication period
2023
2021
2017
2013

Co-Authors (by relevance)

  • Lai, Lee-Lun
  • Brodin-Laakso, Miku
  • Gylfason, Kristinn
  • Hartwig, Oliver
  • Nyman, Johan
  • Edinger, Pierre
  • Stemme, Göran
  • Duesberg, Georg S.
  • Niklaus, Frank
  • Mayer, Joachim
  • Laakso, Miku
  • Gylfason, Kristinn B.
  • Huang, Po-Han
  • Verheyen, Peter
  • Bogaerts, Wim
  • Takabayashi, Alain
  • Khan, Umar
  • Sattari, Hamed
  • Björk, Joel
  • Colangelo, Marco
  • Ahmed, Samy
  • Sandström, Niklas
  • Haraldsson, Tommy
  • Wijngaart, Wouter Van Der
  • Shafagh, Reza Z.
  • Saharil, Farizah
  • Mola Romero, Albert
OrganizationsLocationPeople

article

Silicon photonic microelectromechanical phase shifters for scalable programmable photonics

  • Verheyen, Peter
  • Bogaerts, Wim
  • Errando-Herranz, Carlos
  • Gylfason, Kristinn
  • Takabayashi, Alain
  • Edinger, Pierre
  • Khan, Umar
  • Sattari, Hamed
Abstract

<jats:p>Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2.9</mml:mn><mml:mi>π<!-- π --></mml:mi><mml:mo>±<!-- ± --></mml:mo><mml:mi>π<!-- π --></mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></jats:inline-formula> phase shift at 1550 nm, with an insertion loss of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>0.33</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>0.10</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:math></jats:inline-formula>, a <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>V</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>10.7</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>1.4</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>2.2</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">V</mml:mi></mml:mrow></mml:math></jats:inline-formula>, and an <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>L</mml:mi><mml:mi>π<!-- π --></mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula> of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mn>17.2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mn>4.3</mml:mn></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>+</mml:mo><mml:mn>8.8</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo><mml:mspace width="thickmathspace" /><mml:mtext>µ<!-- µ --></mml:mtext><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math></jats:inline-formula>. We also measured an actuation bandwidth <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>f</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−<!-- − --></mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>3</mml:mn><mml:mspace width="thickmathspace" /><mml:mi mathvariant="normal">d</mml:mi><mml:mi mathvariant="normal">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.</jats:p>

Topics
  • phase
  • Silicon
  • optical rotatory dispersion