People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mittal, Vinita
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Laser-driven phase segregation and tailoring of compositionally graded microstructures in Si-Ge nanoscale thin filmscitations
- 2020Laser processed semiconductors for integrated photonic devices
- 2020Laser-written silicon-germanium alloy microstructures with tunable compositionally graded profiles
- 2019Laser processing of amorphous semiconductors on planar substrates for photonic and optoelectronic applications
- 2018Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopycitations
- 2017Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applicationscitations
- 2014High-contrast, GeTe 4 waveguides for mid-infrared biomedical sensing applicationscitations
- 2014High-contrast, GeTe4 waveguides for mid-infrared biomedical sensing applicationscitations
Places of action
Organizations | Location | People |
---|
article
Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy
Abstract
We demonstrate the integration of paper fluidics with mid-infrared (MIR) chalcogenide waveguides to introduce liquid samples to the waveguide evanescent field for analysis. Spectroscopy of model analytes (water and isopropyl alcohol) having well-defined mid-IR absorptions, on a ZnSe rib waveguide fabricated on silicon, is demonstrated in the wavelength range of 2.6–3.7 μm, showing their O-H and C-H stretching absorptions. The results are compared with a theoretical waveguide model, achieving good agreement. It is concluded that the presence of paper in the evanescent field does not interfere with the waveguide measurements, opening up opportunities to combine low-cost paper-based fluidics and integrated photonic technologies.