People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibsen, Morten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2014All-fiber frequency-doubled visible lasercitations
- 2012Laser-induced crystalline optical waveguide in glass fiber formatcitations
- 2012Highly efficient Raman distributed feedback fibre laserscitations
- 2011Type II parametric downconversion in a poled fiber
- 20111.06 µm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficientcitations
- 2010Measurement of χ^(2) symmetry in a poled fibercitations
- 2010Measurement of X(2) symmetry in a poled fibercitations
- 2010Aperiodically poled silica fibers for bandwidth control of quasi-phase-matched second-harmonic generationcitations
- 2009High-average-power second-harmonic generation from periodically poled silica fiberscitations
- 2007Broadly tunable second-harmonic generation in periodically poled silica fiberscitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fibercitations
Places of action
Organizations | Location | People |
---|
article
All-fiber frequency-doubled visible laser
Abstract
All-fiber ns-pulsed visible laser at lambda=521nm is realized by frequency doubling an Yb-doped fiber laser with a periodically poled silica fiber. A 50-mW second-harmonic (SH) output power is produced that is over 6-orders of magnitude greater than previous results obtained with poled fibers in the visible spectral range. The normalized conversion efficiency of 0.3%/W is to date the largest demonstrated with poled fiber technology. Furthermore, 21% conversion efficiency is achieved for the doubling of 8-ps pulses from a neodymium-doped yttrium vanadate solid-state laser. The advances are made possible by the precision and flexibility offered by using the continuous periodic UV erasure, as opposite to photolithographic methods, for the fabrication of over 20-cm-long chi(2)-gratings for quasi-phase matched SH generation.