People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mackenzie, Jacob I.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Effect of laser repetition rate on the growth of Sc2O3 via pulsed laser depositioncitations
- 2022Sub-ps 1030 nm laser-induced damage threshold evaluation of pulsed-laser deposited sesquioxides and magnetron-sputtered metal oxide optical coatings
- 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser depositioncitations
- 2017Tailoring the refractive index of films during pulsed laser deposition growth
- 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
- 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser deposition
- 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospective
- 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devices
- 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices
- 2015Pulsed laser-assisted fabrication of laser gain media
- 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser deposition
- 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)
- 2013Doped sesquioxide growth by pulsed laser deposition for planar waveguide lasing applications
- 2012Investigation of Erbium-doped tellurite glasses for a planar waveguide power amplifier at 1.57 microns
- 2012Er-doped Tellurite glasses for planar waveguide power amplifier with extended gain bandwidthcitations
- 2010Efficient in-band pumped Ho:LuLiF4 2µm lasercitations
- 2010Efficient fiber-laser pumped Ho:LuLiF4 lasercitations
- 2005High-power and ultra-efficient operation of a Tm3+-doped silica fiber laser
Places of action
Organizations | Location | People |
---|
article
Efficient in-band pumped Ho:LuLiF4 2µm laser
Abstract
An efficient Ho:LuLiF<sub>4</sub> laser in-band pumped by a cladding-pumped Tm-doped silica fiber laser operating at 1937 nm is reported. At low-cavity output coupling, the Ho:LuLiF<sub>4</sub> laser yielded 5.1 W of output at a wavelength of 2066 nm for 8.0 W of absorbed pump power with a slope efficiency of 70%. At high-cavity output coupling, the lasing wavelength shifted to 2053 nm and the laser produced an output power of 5.4 W with a slope efficiency of 76%. The beam propagation factor (M2) was measured to be ~1.1 at the maximum output power confirming fundamental transverse mode (TEMoo) operation. The influence of resonator design on laser performance is discussed, along with prospects for further power scaling and improvement of the laser efficiency.