People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jung, Yongmin
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Microlens Hollow-Core Fiber Probes for Operando Raman Spectroscopy.
- 2024Double-clad antiresonant hollow-core fiber and its comparison with other fibers for multiphoton micro-endoscopycitations
- 2024Double-clad antiresonant hollow-core fiber and its comparison with other fibers for multiphoton micro-endoscopycitations
- 2021Compact chirped-pulse amplification systems based on highly Tm3+ doped germanate fibercitations
- 2020Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplificationcitations
- 2019Highly efficient Tm3+ doped germanate large mode area single mode fiber lasercitations
- 2019Ultra-short wavelength operation of thulium doped fiber amplifiers and laserscitations
- 2019Highly efficient Tm 3+ doped germanate large mode area single mode fiber lasercitations
- 2017Elliptical core few mode fibers for multiple-input multiple output-free space division multiplexing transmissioncitations
- 2017Merging metamaterial and optical fiber technologies
- 2017Fibre-coupled photonic metadevices
- 2015Highly efficient Yb-free Er-La-Al doped ultra low NA large mode area single-trench fiber lasercitations
- 2015Experimental demonstration of single-mode large mode area multi-trench fiber for UV-VIS light transmission
- 2014Robust single-mode all-solid multi-trench fiber with large effective mode areacitations
- 2014Extending single mode performance of all-solid large-mode-area single trench fibercitations
- 2009Optical fiber nanowires and microwires: fabrication and applicationscitations
- 2008Observation of tunable bandpass characteristics in a hollow-optical-fiber-microstructured-fiber composite structure using bend-loss edge-shift effectscitations
Places of action
Organizations | Location | People |
---|
article
Observation of tunable bandpass characteristics in a hollow-optical-fiber-microstructured-fiber composite structure using bend-loss edge-shift effects
Abstract
Two optical fibers with different types of air-hole imbedded structures were serially concatenated to provide novel transmission characteristics. Bending sensitive shifts of the fundamental mode cutoff in a hollow optical fiber and a hexagonal microstructured holey fiber were found to be in opposite directions, which defines a new window with flexible tuning of the center wavelength and the bandwidth of transmission by independent bending radii control of the fibers. The concatenated composite structure provided useful optical transmission window management ranging from 400 to 1700 nm along with a tunable pass bandwidth of 300-1000 nm and a sideband rejection efficiency better than 20 dB. (C) 2008 Optical Society of America