People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hoehl, Arne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Calibration method for complex permittivity measurements using s-SNOM combining multiple probe tapping harmonics
Abstract
<jats:p>Scattering-type scanning near-field optical microscopy (s-SNOM) enables sub-diffraction spectroscopy, featuring high sensitivity to small spatial permittivity variations of the sample surface. However, due to the complexity of the near-field probe-sample interaction, the quantitative extraction of the complex permittivity leads to a computationally demanding inverse problem, requiring further approximation of the system to an invertible model. Black-box calibration methods, similar to those applied to microwave vector network analyzers, allow the extraction of the permittivity without detailed electromagnetic modeling of the probe-sample interaction. These methods, however, are typically designed for stationary setups. In contrast, the distance between the sample and the probe tip of the s-SNOM is periodically modulated to differentiate the near-field interaction from the far-field background via lock-in detection of the harmonics of the periodic motion. This paper proposes an improved black-box calibration method that takes account of the effects of the probe tapping, including its multiple harmonics, and far-field background. The method is validated for an s-SNOM operating in the mid-infrared spectral range by applying it to spectroscopic measurements of silicon microstructures of different but well characterized doping.</jats:p>