People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caglayan, Humeyra
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Ultrafast optical properties of stoichiometric and non-stoichiometric refractory metal nitrides TiNx, ZrNx, and HfNxcitations
- 2023Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applicationscitations
- 2023Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applicationscitations
- 2023New Horizons in Near-Zero Refractive Index Photonics and Hyperbolic Metamaterialscitations
- 2022Self-Rolling SiO2/Au Based Epsilon-Near-Zero Metamaterialscitations
- 2022Mechanism of emitters coupled with a polymer-based hyperbolic metamaterialcitations
- 2021Loss compensated extraordinary transmission in hybridized plasmonic nanocavitiescitations
- 2020Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterialscitations
- 2020Loss compensated extraordinary transmission in hybridized plasmonic nanocavitiescitations
- 2018Highly-Sensitive Refractive Index Sensing by Near-infrared Metatronic Nanocircuitscitations
- 2018Enhanced tunability of metasurfaces with graphene
- 2018Electrically switchable metadevices via graphenecitations
- 2018Electrically switchable metadevices via graphene.
- 2014Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystalscitations
- 2013Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystalscitations
- 2013Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO)citations
- 2012Composite chiral metamaterials with negative refractive index and high values of the figure of meritcitations
- 2008Experimental observation of cavity formation in composite metamaterialscitations
- 2006Designing materials with desired electromagnetic propertiescitations
Places of action
Organizations | Location | People |
---|
article
Ultrafast optical properties of stoichiometric and non-stoichiometric refractory metal nitrides TiNx, ZrNx, and HfNx
Abstract
Refractory metal nitrides have recently gained attention in various fields of modern photonics due to their cheap and robust production technology, silicon-technology compatibility, high thermal and mechanical resistance, and competitive optical characteristics in comparison to typical plasmonic materials like gold and silver. In this work, we demonstrate that by varying the stoichiometry of sputtered nitride films, both static and ultrafast optical responses of refractory metal nitrides can efficiently be controlled. We further prove that the spectral changes in ultrafast transient response are directly related to the position of the epsilon-near-zero region. At the same time, the analysis of the temporal dynamics allows us to identify three time components: the “fast” femtosecond one, the “moderate” picosecond one, and the “slow” at the nanosecond time scale. We also find out that the non-stoichiometry does not significantly decrease the recovery time of the reflectance value. Our results show the strong electron-phonon coupling and reveal the importance of both the electron and lattice temperature-induced changes in the permittivity near the ENZ region and the thermal origin of the long tail in the transient optical response of refractory nitrides. ; Peer reviewed