Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stone, Jim

  • Google
  • 2
  • 7
  • 31

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Guidance of ultraviolet light down to 190 nm in a hollow-core optical fibre9citations
  • 2022Stack, seal, evacuate, draw: A method for drawing hollow-core fiber stacks under positive and negative pressure22citations

Places of action

Chart of shared publication
Harrington, Kerrianne
1 / 1 shared
Knight, Jonathan C.
1 / 14 shared
Wadsworth, William
1 / 4 shared
Birks, Timothy A.
2 / 8 shared
Mears, Robbie
1 / 1 shared
Yerolatsitis, Stephanos
1 / 1 shared
Murphy, Leah
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Harrington, Kerrianne
  • Knight, Jonathan C.
  • Wadsworth, William
  • Birks, Timothy A.
  • Mears, Robbie
  • Yerolatsitis, Stephanos
  • Murphy, Leah
OrganizationsLocationPeople

article

Stack, seal, evacuate, draw: A method for drawing hollow-core fiber stacks under positive and negative pressure

  • Yerolatsitis, Stephanos
  • Stone, Jim
  • Birks, Timothy A.
  • Murphy, Leah
Abstract

The two-stage stack and draw technique is an established method for fabricating microstructured fibers, including hollow-core fibers. A stack of glass elements of around a meter in length and centimeters in outer diameter forms the first stage preform, which is drawn into millimeter scale canes. The second stage preform is one of the canes, which is drawn, under active pressure, into microscopic fiber. Separately controlled pressure lines are connected to different holes or sets of holes in the cane to control the microstructure of the fiber being drawn,often relying on glues or other sealants to isolate the differently-pressured regions. We show that the selective fusion and collapse of the elements of the stack, before it is drawn to cane or fiber, allows the stack to be drawn directly under differential pressure without introducing a sealant. Three applications illustrate the advantages of this approach. First, we draw antiresonant hollow-core fiber directly from the stack without making a cane, allowing a significantly longer length of fiber to be drawn. Second, we fabricate canes under pressure,such that they are structurally more similar to the final fiber. Finally, we use the method to fabricate new types of microstructured resonators with a non-circular cross-section.

Topics
  • impedance spectroscopy
  • microstructure
  • glass
  • glass
  • drawing