Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monge-Bartolome, Laura

  • Google
  • 2
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates10citations
  • 2021GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates10citations

Places of action

Chart of shared publication
Cerutti, Laurent
2 / 23 shared
Boissier, Guilhem
2 / 4 shared
Tournié, Eric
2 / 21 shared
Lai, Billy
2 / 2 shared
Rodriguez, Jean-Baptiste
2 / 20 shared
Lau, Kei, May
1 / 1 shared
Shi, Bei
2 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Cerutti, Laurent
  • Boissier, Guilhem
  • Tournié, Eric
  • Lai, Billy
  • Rodriguez, Jean-Baptiste
  • Lau, Kei, May
  • Shi, Bei
OrganizationsLocationPeople

article

GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates

  • Cerutti, Laurent
  • Monge-Bartolome, Laura
  • Boissier, Guilhem
  • Tournié, Eric
  • Lai, Billy
  • Rodriguez, Jean-Baptiste
  • Shi, Bei
Abstract

<jats:p>We report GaSb-based laser diodes (LDs) grown on on-axis (001) Si substrates and emitting at 2.3 µm. Two series of LDs were studied and compared. For the first series, a GaAs-based buffer layer was first grown by metal organic chemical vapor deposition (MOCVD) before growing the laser heterostructure by molecular-beam epitaxy (MBE). For the second series, a MOCVD GaSb buffer layer was added between the MOCVD GaAs buffer layer and the MBE laser heterostructure. Both series of LDs exhibited threshold currents in the 50–100 mA range and several mW output power at room temperature. They demonstrated continuous wave operation (CW) up to 70°C (set-up limited) without thermal rollover. Broad area LDs exhibited record threshold-current densities in the 250–350 A.cm<jats:sup>−2</jats:sup> range for the second series of LDs, in spite of cracks that appeared during device processing. These results show that the design and fabrication steps of the buffer-layer stacks are critical issues in the epitaxial integration of GaSb-based optoelectronic devices on Si substrates and offer room for much performance improvement.</jats:p>

Topics
  • crack
  • chemical vapor deposition