Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramírez Martínez, Norberto Javier

  • Google
  • 4
  • 4
  • 21

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Development of Tm:Ho co-doped silica fiber for high-power operation at 2.1μmcitations
  • 2020Study on the dopant concentration ratio in thulium-holmium doped silica fibers for lasing at 2.1µm20citations
  • 2020Efficient cladding pump Tm1citations
  • 2019Pulsed Yb-doped phospho-silicate fiber MOPA source with 25kW peak power and excellent beam qualitycitations

Places of action

Chart of shared publication
Sahu, Jayanta Kumar
4 / 64 shared
Núñez-Velázquez, Martin Miguel Angel
4 / 17 shared
Umnikov, Andrey
1 / 2 shared
Barua, P.
1 / 8 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Sahu, Jayanta Kumar
  • Núñez-Velázquez, Martin Miguel Angel
  • Umnikov, Andrey
  • Barua, P.
OrganizationsLocationPeople

article

Study on the dopant concentration ratio in thulium-holmium doped silica fibers for lasing at 2.1µm

  • Ramírez Martínez, Norberto Javier
  • Sahu, Jayanta Kumar
  • Núñez-Velázquez, Martin Miguel Angel
Abstract

We present the fabrication and laser performance of thulium-holmium co-doped silica fibers when cladding pumped at ∼790 nm. By using the hybrid gas phase-solution doping process in conjunction with the MCVD preform fabrication technique, the doping concentration and the Tm:Ho ratio were varied to study the energy transfer efficiency from Tm<sup>3+</sup> to Ho<sup>3+</sup>. Our study indicates that for a thulium concentration that has resulted in an efficient two-for-one cross- relaxation process with 790 nm pumping, and while maintaining a Tm:Ho concentration ratio in the range ∼ 10 to 20, the energy transfer efficiency has reached above 75%. In a free-running laser cavity, the pump power limited laser output of 38W with a slope efficiency of 56% at 2.1 microns is demonstrated.

Topics
  • impedance spectroscopy
  • gas phase
  • Thulium
  • Holmium