People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saito, Shinichi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuitscitations
- 2019BCS-BEC crossover and superconductor-insulator transition in Hopf-linked Graphene layers: Hopfenecitations
- 2018Germanium implanted photonic devices for post-fabrication trimming and programmable circuitscitations
- 2018Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devicescitations
- 2017Transversal symmetry breaking in novel photonic crystal waveguide
Places of action
Organizations | Location | People |
---|
article
Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuits
Abstract
A novel technique for realization of configurable/one-time programmable (OTP) silicon photonic circuits is presented. Once the proposed photonic circuit is programmed, its signal routing is retained without the need for additional power consumption. This technology can potentially enable a multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore, the production costs per chip can be reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for the configurable circuits in the form of erasable directional couplers (DCs) were designed and fabricated, using ion implanted waveguides. We demonstrate permanent switching of optical signals between the drop port and through port of the DCs using a localized post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1×4 and 2×2 programmable switching circuits were fabricated and subsequently programmed.