People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mccarthy, Mary E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems
Abstract
We introduce a closed form equation, validated by simulations and experimental<br/>results, that predicts the residual nonlinear noise ratio in mid-link OPC assisted discretely amplified systems. The model anticipates the reduction in performance enhancement achieved by mid-link OPC as the bandwidth of the modulated signals increases. The numerical analysis shows that uncompensated signal-signal interactions limit the performance improvement achieved by the introduction of additional OPCs. The numerical analysis predicts that the deployment of shorter amplifier spacing will lead to a greater performance enhancement. The numerical results are validated by experimentally testing of 2x, 4x, and 8x28Gbaud PM-QPSK systems with mid-link OPC compensation in a discretely amplified system with 100km amplifier spacing. The experimentally obtained reach enhancement (43%, 32%, and 24% for 2x28Gbaud, 4x28Gbaud, and 8x28Gbaud, respectively) confirms that the compensation efficiency of mid-link OPC is highly dependent on the number of channels (bandwidth) propagating along the system.