People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Semenova, Elizaveta
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024InAs(P)/InP QDs as sources of single indistinguishable photons at 1.55 µm
- 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavitycitations
- 2024Heterogeneous integration of single InAs/InP quantum dots with the SOI chip using direct bondingcitations
- 2020Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengthscitations
- 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolaser
- 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolaser
- 2018Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip for Low-Power Optical Signal Processingcitations
- 2017Mid-IR optical properties of silicon doped InPcitations
- 2016Highly doped InP as a low loss plasmonic material for mid-IR regioncitations
- 2016An Ultra-Efficient Nonlinear Platform: AlGaAs-On-Insulator
- 2013Ultrahigh-speed hybrid laser for silicon photonic integrated chips
- 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguides
- 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguides
- 2011Towards quantitative three-dimensional characterisation of InAs quantum dots
- 2011Active III-V Semiconductor Photonic Crystal Waveguidescitations
Places of action
Organizations | Location | People |
---|
article
Highly doped InP as a low loss plasmonic material for mid-IR region
Abstract
We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.